USA invaded – by crazy ants!!

p5So it is proved! Humans are not the only species who can be attributed to being crazy at times. They share the title with a particular type of ants called “crazy ants”. Crazy ants called so because of their erratic behavior actually are ants that belong to the genus Paratrechina from the subfamily Formicinae. Over 150 species and subspecies are described, some of which occur on every continent (except Antarctica). They form large colonies in open soil or under rocks or other objects, or in rotten wood on the ground. Specifically, Paratrechina longicornis occurs around the world. It is also known as ‘Longhorn ants’. They do not bite or sting people. Longhorn crazy ants are able to reproduce with their siblings without any negative effects of inbreeding. This has allowed them to become one of the most widespread invasive ants in the tropics. The crazy ant is found in various parts of the world and is not native to the United States (Smith 1965). While found in tropical cities worldwide, it was thought to be of either Asian or African origin. In fact, Wetterer (2008) argues that Paratrechina longicornis is the most “broadly distributed of any ant species.” Colonies of crazy ants are moderate to very populous. This species is a pantropical tramp that is easily dispersed by human activity. However, while the term ‘crazy ant’ is officially identified with this species, there are other closely related ant species that are also called ‘crazy ants’.

p3There is another species of crazy ants called Nylanderia fulva. These are an invasive species of ants. They are known as Rasberry crazy ant or tawny crazy ant originally found in Houston, Texas. While this species is part of the Paratrechina or “crazy ant” complex (group named because of the ants’ random, nonlinear movements), the media and others in Texas are also calling it “Rasberry” after the exterminator Tom Rasberry, who first noticed the ants were a problem in 2002. A large infestation is currently present in at least 20 counties in Texas. The ants appear to prefer the warmth and moistness of the coast. The colonies have multiple queens. Nylanderia fulva appear to displace other ant species, including red imported fire ants  most likely due to exploitative and interference competition. The ants are not attracted to ordinary ant baits, are not controlled by over-the-counter pesticides, and are harder to fully exterminate than many other species because their colonies have multiple queens. Scientists have described the ants as having overrun Texas since the early 2000s.

The crazy ant has achieved pest statusimages across the United States. It has been found on top floors of large apartment buildings in New York, hotels and flats in Boston and in hotel kitchens in San Francisco, California. It can be a significant agricultural pest as it assists in the distribution and/or protection of phloem-feeding Hemiptera, such as mealybugs, scale insects, and plant aphids (Wetterer 2008). The crazy ant is an agricultural and household pest in most tropical and subtropical areas, and is a pervasive indoor pest in temperate areas. It has the ability to successfully survive in highly disturbed and artificial areas, including ships at sea. Since it can live indoors with humans, there is no limit to the latitude where it can exist!!

There is alarming news for the residents of the southeastern states of USA as was reported by Danielle Elliot of CBS News on 1st July, 2013. An astonishing numbers of crazy ants have been reported to be swarming towards their states. USA Today reported University of Texas research assistant Ed LeBrun saying these ants have since spread to about 50 counties across Texas, Florida, Mississippi and Louisiana. They nest everywhere from crawl spaces and walls to electrical wires and small circuits. Researchers at Texas A&M University say they cause about $146.5 million in electrical damage each year. In a study published in April, researchers from Texas A&M University found that fire ants are able to fend off crazy ants in most situations. But that shifts when crazy ants are restricted to a low-sugar diet, as happens when fire ants consume most of the available food. When consuming a low-sugar diet, crazy ants become stronger and more aggressive, and able to defeat the fire ants. When UT researchers recently investigated two crazy ant invasion sites, they found the red ant population decimated — a sign that the crazy ant may quickly reign supreme in the southeastern region.

A very peculiar thing has been noted about these crazy ants. They have a penchant for electrical appliances. As Mary Beth Quirk of The Consumerist reported on 2nd July, 2013 these ants can make a meal of almost any electrical gadget from a cell phone to an air conditioner! They enter these gadgets and make them their home. They can chew on the internal wires thus causing a short circuit. If one gets electrocuted, its death releases a chemical on a cue to attack as they recognize a threat to the colony, said Roger Gold, an entomology professor at Texas A&M. “The other ants rush in. Before long, you have a wall of ants,” he said. Why they are attracted to electrical equipment is still a mystery.. But various theories have been postulated regarding this most credible ones being that they sense the magnetic field surrounding wires with electric current flowing through them. Or, they might prefer the heat byproduct of resistance in the wires. However, it could simply be they are searching for food or a nesting location that is easy to defend.

The Weekly World News on 9th June, 2013 reported that the crazy ants in Texas and Mississippi were destroying property and attacking humans!! The Crazy Ant Poison that U.S. Exterminators use only stops them for a day, and then a fresh horde shows up, bringing babies. Controlling them can cost millions of dollars.  And there’s no surefire way of controlling them. If 100,000 are killed by pesticides, billions more will follow.

The current method of controlling them involves the use of a toxic product called Fipronil. Fipronil is a broad spectrum insecticide that disrupts the insect’s central nervous system. Fipronil is a slow acting poison. Its wildlife impacts include:

1) Fipronil is highly toxic to fish and aquatic invertebrates.

2) Fipronil is toxic to bees and should not be applied to vegetation when bees are foraging.

3) Fipronil has been found to be highly toxic to upland game birds.

Thus an alternative non-toxic and eco-friendly solution needs to be devised to combat this ever growing problem of crazy ants. Termirepel™ can provide us the much required ray of hope in this increasingly hopeless situation. Termirepel™ is a unique non-toxic and eco-friendly product which works by the mechanism of repellence and not killing. Also it ensures that the ant infestation will not recur.

Butterflies- magnificent but endangered…

butterfly.Butterflies are magnificent creatures- vibrant and colorful. They are very important for our ecosystem. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Some species are pests because in their larval stages they can damage domestic crops or trees; however, some species are agents of pollination of some plants, and caterpillars of a few butterflies   eat harmful insects. Butterflies exhibit polymorphism, mimicry and aposematism. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen tree sap, rotting fruit, dung, decaying flesh, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants as they can carry pollen over long distances.

Monarch_Among the many species of butterflies a special mention has to be made of the truly breath taking Monarch butterflies. Monarch butterflies named so because of their huge size are also called as wanderers mostly because of the characteristic trait they exhibit of migration. These butterflies are famous for their southward migration and northward return in summer from Canada to Mexico and Baja California which spans the life of three to four generations of the butterfly. Monarch butterflies are one of the few insects which can cross the Atlantic. Monarch butterflies primarily feed on milkweed plants which contain cardiac glycosides which make them distasteful as preys and thus protect them from their predators.

Decline in insect populations over long periods is viewed as a natural phenomenon but this is   not true in case of Monarch butterflies. “Monarchs have been faced with the loss of habitat for many years”, said Jen Baker, Head-of-the-Lake Land Trust Program coordinator for the Hamilton Naturalists’ Club.

egg on milkweedMilkweed, the Monarch larvae’s main food source as well as where they lay their eggs, has been depleting. The main reason for this steady decline is the unrestricted use of pesticides and weedicides. These harmful and toxic chemicals might protect the other plants from insects but they sure manage to kill the milkweed plant. The number of milkweed plants has decreased by 58 percent from 1997 to 2010 almost entirely from losses in cultivated fields due to indiscriminate use of herbicides. An army of volunteers in the U of M-based Monarch Larva Monitoring Project has been collecting data on the numbers of monarch eggs per milkweed plant in more than 800 milkweed patches around the country Also, since monarchs lay more eggs on milkweeds if they’re in cultivated fields, egg production was disproportionately affected by the loss of agricultural milkweed plants. The researchers estimate that between 1999 and 2010, monarch egg production in the Midwest dropped by 81 percent.

Christine Dell’Amore of National Geographic News wrote in her article dated 18th March, 2013 that in December 2012, scientists surveying Monarch habitat in Mexico’s Monarch Butterfly Biosphere Reserve found the insects  occupied 59 percent less land than the previous year—the smallest area recorded in 20 years. Nine butterfly colonies were found in just 2.94 acres (1.19 hectares) of land, compared with 7.14 acres (2.89 hectares) in 2011 and a high of 44.9 acres (18.19 hectares) in 1997, according to the report, released March 13.

This is alarming news for the Monarch butterflies as well as us since widespread depletion of Monarch butterfly populations will have a direct effect on the pollination of some flowers and subsequently disturb the food chain. Thus it is the need of the hour to curb the use of toxic and harmful chemicals as weedicides and switch over to a more environment friendly as well as non-toxic way to protect the plants while ensuring that non-target species like butterflies are not harmed in any way. Termirepel and Rodrepel are coming of age products which have the unique attributes of being non-toxic and environment friendly insect and pest aversives. They are meant to repel and not kill the target species and have no effect whatsoever on non-target species like butterflies which are very helpful in pollination.

Termirepel™ against Spruce budworm

downloadSpruce budworm is one of the most damaging native insects of spruces and true fir in the USA and Canada. Their food of choice is conifers mainly balsam fir, white spruce and red spruce. During light or moderate infestations the damage is restricted to a partial loss of new foliage, particularly in the upper crown of the tree. During a major outbreak, tens of millions of hectares of trees can be severely defoliated by the insect. This in turn can result in significant losses of important timber and non-timber resources, negatively affecting the forest industry and forestry-dependent communities. Spruce budworm outbreaks have devastated huge areas of forests on a more or less regular basis since the 18th century.

Spruce budworms and its relatives are a group of closely related insects in the genus Choristoneura. There are nearly forty Choristoneura species, and even more subspecies, or forms, with a complexity of variation among populations found throughout much of the United States and Canada, and about again this number in Eurasia.

download (2)Adult moths are about 1/2 inch (12.7 mm) long and have a wing-spread of 7/8 to 11/8 inches (22 to 28mm). Moths of both sexes are similar in appearance, although the females are a bit more robust than males. Both sexes fly. The gray- or orange-brown forewings are banded or streaked, and each usually has a conspicuous white dot on the wing margin. Eggs are oval, light green, and about 3/64 inch (1.2mm) long and overlap like shingles. The adults mate, and within 7 to 10 days, the female deposits her eggs and then dies. Each female deposits approximately 150 eggs, usually on the underside of conifer needles. Eggs are laid in one to three-row masses containing a few to 130 eggs, with an average of 25 to 40 eggs per mass. Larvae hatch from eggs in about 10 days. Larvae do not feed, but seek sheltered places under bark scales or in and among lichens on the tree bole or limbs. Here, they spin silken tents in which they remain inactive through the winter.

download (1)The native spruce budworm is a major defoliator of conifer forests, where it attacks mainly balsam fir and spruces and occasionally other conifer species. In the mid-1980s, the spruce budworm destroyed more than 10 million cubic meters of wood in Quebec, Canada alone. The larvae are to be blamed for this. They first mine or tunnel into year-old needles, closed buds, or newly developing vegetative or reproductive buds. Larvae prefer buds but will also attack old needles. The first symptoms of damage are usually frass and silk webs in buds or on last year’s needles. Tree crowns may appear brown as a result of partly chewed needles, dead buds and frass being webbed together and thus held at branch tips to dry. During outbreaks, it is common to see large numbers of caterpillars hanging from the ends of silk threads. This allows them to spin further down the tree canopy, or to be carried considerable distance by air currents. In light infestations, partial loss of new foliage, particularly in the upper crown, may occur. In heavier infestations, more serious defoliation may result. Defoliation for three years or more will reduce tree vitality and may produce top kill of leaders and some terminal branch shoots. Five to seven successive years of defoliation will lead to tree mortality. A single, complete defoliation commonly kills conifers.

The availability of extensive forests of susceptible host trees is a primary contributor to the development of widespread outbreaks, mostly by supporting the survival of small larvae and maturation of moths that reproduce and migrate to new areas. The last extensive outbreak of spruce budworm in Canada reached its peak in the 1970s, damaging more than 50 million hectares. Steady increase in the area of forest damaged by spruce budworm has been observed in eastern Canada since 2006, perhaps heralding a new, extensive outbreak in that part of the country. The damage caused by this worm goes into millions of dollars annually in the USA as well as Canada.

Let us see the following news article:

Bracing for spruce budworm assault

Chris Morris

Legislature Bureau

18 Jul 2013 07:46AM

FREDERICTON – Researchers are hunting for ways to out manoeuvre the spruce budworm as the insects begin massing for a major assault on the forests of New Brunswick and eastern Canada. Rob Johns, a researcher with the Canadian Forest Service in Fredericton, said Wednesday the budworm outbreak in Quebec is expanding and there are fears the infestation could spread into New Brunswick in the near future.“It will come pretty quickly when it does come,” Johns said in an interview. He said he was looking at video sent to him earlier this week of a mass migration of budworm moths across the St. Lawrence River to Rimouski.

“There were millions flying around in this parking lot to the point where you could scoop them up in your hands,” he said. Johns said the budworms have caused severe to moderate damage over as much as six million hectares of Quebec forest so far. He said the outbreak has been roughly doubling since it first began in the Baie Comeau area in 2006. Spruce budworm is a forest insect pest native to North America whose larva feed on balsam fir and spruce trees. Historically, outbreaks have occurred every 30 to 50 years in northeastern North America.

The last outbreak of spruce budworm began in roughly the 1970s. The last significant spruce budworm damage observed in New Brunswick occurred in 1995.

Johns said that during the last major outbreak, 51 million hectares were infested throughout northeastern North America and “40 per cent of the trees hit heavily by the budworm died.”

“The spruce budworm caused significant tree mortality and volume loss during the last outbreak,” the New Brunswick Department of Natural Resources said in a statement.

“It is uncertain at this point how severe the next outbreak will be in New Brunswick. However, we can expect that an uncontrolled spruce budworm outbreak will cause damage to our spruce and fir forests, resulting in potentially significant reductions to the amount of timber volume available for harvest and possible impacts on other forest values such as old spruce-fir wildlife habitat.” There are predictions a spruce budworm infestation could begin in earnest in New Brunswick in two years. The infestation in Quebec has reached the Gaspe, just a few kilometers from the New Brunswick border. Johns said governments, researchers and industry want to be prepared for the spruce budworm infestation this time and are studying ways to minimize the impact.

“The idea right now is we’re hoping that if we can start treating populations at low densities before they actually get to these huge epidemic levels then we can possibly keep them at bay and maintain a low level of infection,” he said.

“We are starting to test this early intervention strategy where we are actually trying to treat some of these very small populations.”

Johns said tests on small areas are being conducted in Quebec, but it is still too early to say whether it will be effective.

It’s expected the Madawaska region will likely be the first hit in New Brunswick.

Spraying for the spruce budworm costs approximately $80 per hectare. For a moderate outbreak, spraying could cost up to $80 million or, in the event of a crisis, roughly $200 million.

The cost would likely be split between different levels of government and industry.

The budworm problem has been a consistent and pestering one since the past several years. North America and especially Canada has suffered a lot due to this pesky pest. The hectares of forest land lost to this pest are on the increase and will further continue if appropriate steps are not taken. Outbreak of budworm infestation is quite sudden without a preamble.

Termirepel™ is a non-toxic, non-hazardous insect and pest repellant. Primarily designed to be used as a termite aversive, it is highly effective against a host of other insects and pests. It works by the mechanism of repellence by which it ensures that the target insect or pest stays away from the application without resorting to killing it. Termirepel™ is available in liquid form which can be mixed with paint and applied on conifers. It can also be used in the form of a spray.